Status of first generation of FLNG and trend and perspective for the next generation

Dominique Gadelle – Technip - Vice-President Upstream / LNG

Atelier 1 – La mer, nouveau terrain de conquête pour le GNL
Natural gas market growth - FLNG & LNG

Cost competition with coal
Political support for environmental benefits

- Highest growth is in Asia
- Drivers are
 - GDP growth
 - Urbanisation
 - Political pressure in favour of clean fuels incl. gas
 - China and India both have air quality issues in the big cities
 - COP21 concluded favourably for gas
- China and India as biggest new markets
 - Primary energy 13% CAGR over the last 9 years
 - Still dominated by coal
 - Gas market share growth will continue

Source: BP Statistical Review of World Energy 2015
Projects with vastly different economics

Only the most profitable projects are likely to go ahead.

Breakeven FOB cost of LNG

- inclusive of
 - Upstream (field development)
 - Pipeline
 - Liquefaction

FLNG

Mature LNG plants
GoM brownfield & Middle East
Greenfield US & East Africa
Australia & Canada
New plant

FID
FEASIBLE
IN
LOW PRICE
ENVIRONMENT

0
2
4
6
8
10
12
14
16

$/MMBtu
Technip an innovator in LNG - Differentiators

- An LNG EPC contractor for over 50 Years
- Delivered with our partners to-date 80 Mtpa of LNG production capacity including the world’s biggest LNG facilities: Qatar, Nigeria and Yemen.
- Yamal LNG EPC currently ongoing
- Leading in floating liquefaction (FLNG)
- Diversity in scale, LNG technology and location
- Leading in innovation rich areas
 - Shell FLNG, Petronas FLNG 1, Browse FLNG (FEED)
 - Mid-scale LNG
- Technologically strong: introduced many concepts to the industry that are widely used today
- Safety in design, modularization, marine works, global procurement...

* Picture courtesy of Shell
Numerous FLNG studies for IOCs & NOCs

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FEED Barge Mounted FLNG</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>Conceptual Study</td>
<td>Small</td>
<td></td>
</tr>
<tr>
<td>Conceptual Study</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>Internal feasibility Studies</td>
<td>Large</td>
<td></td>
</tr>
<tr>
<td>Internal Pre-FEED Study</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>Conceptual Study</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>Generic FEED</td>
<td>Large</td>
<td></td>
</tr>
<tr>
<td>Conceptual Study</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>Conceptual Study</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>Prelude FEED</td>
<td>Large</td>
<td></td>
</tr>
<tr>
<td>FEED Competition</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>Feasibility Study Arctic</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>PFLNG1 FEED</td>
<td>Small</td>
<td></td>
</tr>
<tr>
<td>Prelude EPCI</td>
<td>Large</td>
<td></td>
</tr>
<tr>
<td>Conceptual Study</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>Conceptual Study Phases 1 & 2</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>Pre-FEED Study</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>Conceptual Study</td>
<td>Small</td>
<td></td>
</tr>
<tr>
<td>PFLNG1 SATU EPCI</td>
<td>Small</td>
<td></td>
</tr>
<tr>
<td>Pre-FEED Study</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>Bonaparte Pre FEED Competition</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>Lean FLNG Pre-FEED</td>
<td>Large</td>
<td></td>
</tr>
<tr>
<td>Conceptual Study</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>Pre-FEED Study East Mediterranean</td>
<td>Large</td>
<td></td>
</tr>
<tr>
<td>Abadi Masela FEED</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>Browse Pre-FEED Study</td>
<td>Large</td>
<td></td>
</tr>
<tr>
<td>FLNG Conceptual study</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>Nearshore Conceptual Studies</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>Coral FEED Competition</td>
<td>Large</td>
<td></td>
</tr>
<tr>
<td>Browse FEED Study</td>
<td>Large</td>
<td></td>
</tr>
<tr>
<td>Nearshore GOM</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>Nearshore FLNG East Africa</td>
<td>Medium</td>
<td></td>
</tr>
</tbody>
</table>

- Pioneer in the 80’s
- Internal studies as investment
- Multiple FLNG capacities and types
- Continuous activities since 2008, in excess of 9 Millions Mhrs
- Several conceptual studies, 7 Pre-FEED, 8 FEED and 2 EPCI

Small <= 1.5 Mtpa < Medium <= 3 Mtpa <= Large
Technip FLNG Main Experience

- **Petrobras FLNG**
 - Lula (offshore Brazil) – 2010

- **Shell Prelude FLNG**
 - Oceania (offshore Australia) – 2010

- **Petronas LNG**
 - Sarawak (offshore Malaysia) – 2010/2011

- **Inpex Abadi FLNG**
 - Indonesia - 2013

- **Shell Generic FLNG**
 - Generic – 2019

- **ENI Coral FLNG**
 - Mozambique – 2015

- **Woodside Browse FLNG**
 - Offshore Australia – 2015

- **Shell Prelude FLNG**
 - Oceania (offshore Australia) – 2011

- **Petronas FLNG**
 - Sarawak (offshore Malaysia) – 2011
Shell Prelude FLNG

- First FLNG project ever sanctioned
- First of two FLNG projects for Technip
- First FLNG under the TP/SHI Frame Agreement with Shell
- Largest floating structure ever built
- Largest multi-centers offshore project ever (Paris, KL, Perth, Chennai)
- 200km from the nearest point on the mainland
- 200 - 250m water depth
- Commissioning at yard on-going

Prelude FLNG

- Length: 488 meters, width: 74 meters
- Weight:
 - Steel: 260,000 tons
 - Displacement (tanks full): 600,000 tons
- Comparison
 - Eiffel Tower iron structure = 7,300 tons
 - Prelude
 - Steel: 36 Eiffel Towers
 - Displacement (tanks full): 82 Eiffel Towers
- Annual Production
 - 3.6 Mtpa LNG capacity
 - 1.3 Mtpa condensate
 - 0.4 Mtpa LPG
- Total liquid production: 110,000 boe/day
Petronas FLNG Satu

- Client: PETRONAS
- Location: Sabah - Sarawak waters, Malaysia
- Scope: FEED and EPCIC
- FEED: Jan 2011 - Jan 2012
- EPCIC: Jun 2012 - Completed
- Partner: consortium with DSME
- FLNG towed to site during May 2016
- Commissioning activities on-going
- Floating Liquefied Natural Gas (FLNG) facility of 1.2 million ton per year maximum capacity
- The 300 meter - long and 60 meter - wide FLNG facility will be located offshore Malaysia
FLNG projects in progress

3 open sea projects at construction phase

<table>
<thead>
<tr>
<th>FLNG project</th>
<th>Country</th>
<th>F.I.D.</th>
<th>Distance From shore (km)</th>
<th>Water Depth (m)</th>
<th>Meteo</th>
<th>Operator</th>
<th>Capacity MTPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prelude FLNG</td>
<td>Australia</td>
<td>05/2011</td>
<td>210</td>
<td>250</td>
<td>Benign (Cyclones)</td>
<td>Shell</td>
<td>3.6</td>
</tr>
<tr>
<td>Petronas FLNG1</td>
<td>Malaysia</td>
<td>06/2012</td>
<td>162</td>
<td>70</td>
<td>Benign</td>
<td>Petronas</td>
<td>1.2</td>
</tr>
<tr>
<td>Petronas FLNG2</td>
<td>Malaysia</td>
<td>01/2014</td>
<td>112</td>
<td>1200</td>
<td>Benign</td>
<td>Murphy</td>
<td>1.5</td>
</tr>
</tbody>
</table>

2 nearshore projects at construction phase

<table>
<thead>
<tr>
<th>FLNG project</th>
<th>Country</th>
<th>F.I.D.</th>
<th>Distance From shore (km)</th>
<th>Operator</th>
<th>Capacity MTPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exmar FLNG Barges 1 (& 2)</td>
<td>Colombia</td>
<td>01/2012</td>
<td>Quay side</td>
<td>Exmar</td>
<td>0.5</td>
</tr>
<tr>
<td>Go FLNG HiLi</td>
<td>Cameroon</td>
<td>09/2015</td>
<td>20</td>
<td>Golar</td>
<td>1.2</td>
</tr>
</tbody>
</table>
Onshore LNG and FLNG export projects

Estimated World liquefaction capacity (Mtpa)

Source: Technip Database

- Qatar: 340 Mtpa (In operation October 2016)
- United States: 126 Mtpa (Under construction)
- Indonesia: 240 Mtpa (Future projects)

FLNG projects include:
- Mozambique
- Tanzania
- Mexico
- Trinidad & Tobago
- Yemen
FLNG possible areas of development
In the current market only the most competitive FLNG projects will fly

- Brazil
 - Pre-Salt Associated Gas
 - Difficult access to land
 - Remote fields and deep water

- Canada & Alaska
 - Nearshore
 - Offshore East Coast
 - High cost of onshore construction

- Arctic Circle
 - Remote Fields

- Eastern Mediterranea
 - High cost of construction
 - Sensitive political environment
 - Difficult shore approach for feed gas P/L

- Africa
 - Better security offshore
 - Remote fields and deep water

- Asia / Pacific
 - Many small fields
 - Presence of subsea trenches

- Australia
 - Remote fields
 - Sensitivity to construction on the coastline
 - High cost of onshore construction
Anticipating the future

- Capitalize on the lessons learnt from the first projects to set the basis of the next generation of FLNG

- When appropriate, repeatability is a must to tackle projects complexity
 - Repeat design and execution plan to reduce EPC cost, schedule and risks
 - Repeat collaborative project execution model

- FLNG economics to be improved by production increase and innovation
 - Individual unit capacity throughput increase and / or intensification to free deck space to increase liquefaction capacity.
 - Innovation: take credit of lessons learnt to validate good solutions and implement new ones
Conclusion

- LNG has a bright long term future in the world energy picture.

- Floating LNG is reaching maturity. Numerous challenges have now been met in design, engineering and construction.

- For given fields FLNG brings advantages over onshore LNG.

- Nearshore LNG can also be contemplated.

- The next generation of FLNG will benefit from:
 - Selective replication bringing schedule and cost certainty.
 - New concepts, that have been developed to improve projects economics:
 - Lean engineering.
 - Large/intensified capacity FLNG concepts, with the possibility of replication, as previously done for onshore LNG projects.