Superduplex stainless steels tubes for subsea umbilicals

Jérôme Peultier, Olivier Wagner, Guy Durand and Gilles Thevenet
Vallourec Umbilicals
Summary

- New technical challenges for umbilicals
- Product characteristics
- Vallourec Umbilicals
- Process manufacturing
 - Welding
 - Annealing and quenching
 - Non destructive testing
- Mill and product qualification
- Corrosion resistance in marine environment
 - Crevice and pitting corrosion
 - Hydrogen Induced Stress Cracking (HISC)
- Savings
- Conclusion

* : courtesy DUCO
New technical challenge for umbilicals

- Subsea umbilical systems for deep offshore become more and more demanding regarding:
 - injection capacity
 - number of functionalities
 - water depth
 - tiebacks length and number

 Operating conditions and requirements are significantly impacting the performance of the main umbilical.

- The most common solution:
 - To design:
 - thicker tubes to improve the strength of the umbilical
 - higher cross section to increase capacity
 - Drawbacks:
 - weight rise and fatigue performance degradation (higher loading)
 - cross section increase unsuitable with packing constrains

 Need to improve properties and geometry of the steel tube reducing wall thickness and improving fatigue resistance
Product characteristics

- **On strip : grade 2507 (UNS S32750 / EN 1.4410)**
 - PREN (Cr + 3.3Mo + 16N) ≥ 42.5
 - Suitable pitting and crevice corrosion resistance
 - High mechanical properties (duplex microstructure + cold rolling)

- **On tube**
 - Optimised strength (whatever the tube sizes)
 - YS_{0.2} > 750MPa
 - UTS > 900MPa
 - Elongation ≥ 25%

- **Tight dimensional tolerances**
 - 5% of the Wall Thickness (WT) compared with 10% required by ASTM A789
 - Internal Diameter (ID) : -0/+0.2mm
Vallourec Umbilicals

- **Vallourec (2012 figures)**
 - 5 326 M€
 - Near 70% of sales in Oil & Gas and Petrochemicals
 - More than 50 manufacturing facilities
 - Presence in more than 20 countries
 - 23200 employees worldwide
 - 93M€ R&D investments

- **Pipe project division**
 - SURF market
 - Strong local presence

- **Vallourec Umbilicals**
 - Steel tube for umbilicals
 - Based on the experience of Vallourec Heat Exchanger tubes (formerly Valtimet)
 - With the technical support of TOTAL SA headquarter Technology Division

Manufacturing process

Laser longitudinal welding line

- Strip Preparation & Forming
- Laser welding
- Weld bead finishing
- Heat treatment
- Sizing & Finishing
- NDT & Marking

Orbital Welding line

- X Ray control
- 360° Polishing
- Orbital welding
- Tube ends preparation
- Defect Cutting
- Sizing & Straightening

Moving units in case of bad weld (tube never rolls back)

Hydrostatic test bench

- Pressure test
- Water cleaning
- Flushing & Drying
- Nitrogen filling

Packing

Finished reels storage

(1) Only for segments with defect indications (and strip splice weld)
Manufacturing process - welding

- Longitudinal laser weld
- Orbital TIG weld
Manufacturing process – Annealing and quenching

Objectives

- **Annealing** (AT: annealing temperature)
 - Stress (brought to forming and welding) release
 - Optimal ferrite – austenite ratio
 - Dissolution of detrimental phases precipitated during welding and cooling (if any)
- **Cooling** (CR = cooling rate)
 - Avoid formation of detrimental phases

Manufacturing process - NDT

- **In-line, real time non destructive test bench**
 - First EC
 - Detection of punctual defects
 - UT
 - Phased array technology: control of 100% of the tube length and circumference without any rotation of the tube or the UT head.
 - To detect longitudinal or transversal defects inside and outside
 - To check wall thickness and diameter outside (OD)
 - Second EC
 - Sigma phase detection

- **Defect marking**
 - Any defect detected by UT or EC controls is monitored and highlighted by a red mark

- **NDT bench calibration**
 - On rails
Qualification

- **Protocol**
 - Raw material and its manufacturing process
 - ASTM A240, ASTM A789 and NORSOK M650
 - Umbilical manufacturers and end-users specifications
 - Tube and its manufacturing process
 - ASTM A789 and NORSOK M650
 - Umbilical manufacturers and end-users specifications

- **3 tube dimensions / 250km / 10 heats**

- **More than 11000 tests results:**
 - Tensile, hardness, burst and collapse tests
 - Chemical composition
 - Roughness measurements
 - Dimensional checks
 - Ferrite content
 - Cleanliness
 - Corrosion tests (according to ASTM G48 methods, SSC and HISC)
 - «Technical» tests (i.e. reverse flattening, flaring, flange and bending)
Main results – Tensile tests

- **Dim**
 - 1 = 15.25mm OD x 1.15mm WT
 - 2 = 28.5mm OD x 1.45mm WT
 - 3 = 18.1mm OD x 1.00mm WT

- **PP** = pre production
- **FP** = full production

YS_{0.2}

- YS_{0.2} average
- Min acceptance

UTS

- UTS average
- Min acceptance

E% average

- E% average
- Min acceptance
Main results – Burst and collapse

Burst resistance

Collapse resistance
Corrosion resistance in marine environment
Operating conditions

- **Immersion in natural seawater**
 - 3 months
 - Heated at 30°C and 50°C
 - One complete renewal of seawater every two days
 - Open circuit potential (OCP)

- **Crevcorr type assembly (30°C test)**
 - Torque = 1Nm (≈ 550N)
 - PVDF crevice washer
 - Ti fasteners

- **Tubes**
 - 25.4mm OD x 2mm WT x 300mm L
 - Seam welded (VU)
 - Seamless tubes

- **Evaluation**
 - Max crevice depth
Corrosion resistance in marine environment
Open circuit potential

- Seam welded tubes

\[T = 30^\circ C \]
(crevice test)

- Seamless tubes
Corrosion resistance in marine environment

Observations

- Seam welded tubes
 - Laser weld
 - Average maximum crevice depth
 - 355µm
 - Max corrosion attack

- Seamless tubes
 - Laser weld seam is not especially sensitive to crevice corrosion

Corrosion resistance in marine environment

Observations

OCP 50°C (pitting test i.e. no crevice washers)
Subsea HISC failures – Examples
Statoil REX[3]

1. Leakage from a 25Cr duplex 2” methanol line on umbilical termination head
 — Very high local stresses due to accidental loads (heavy rock dumping)

2. Leakage in MEG line in umbilical due to cracked 25Cr duplex compact flange
 — FEA analysis: Large hoop stresses in transition between flange ring and neck

Hydrogen Induced Stress Cracking (HISC) resistance
Operating conditions

- **Aim:** study the influence of accumulated plastic strain (APS) resulting from
 - tube steel production
 - umbilical manufacturing
 - laying-out processes

 on HISC resistance of seam welded tubes

- **HISC procedure**
 - **H₂ prep charging:**
 - 20mA/cm²
 - 0.5M H₂SO₄ and 3g/L of KSCN
 - 24h at room temperature
 - **Constant load test**
 - -1050 +0/-50 mV vs SCE
 - 0.9AYS₀.²
 - 500h at room temperature

Reference electrode
Counter electrode
Working electrode (tube sample)
Hydrogen Induced Stress Cracking (HISC) resistance
Pre straining

- **Straining conditions**
 - Strain variation ± 1%
 - Frequency 0.07Hz
 - Accumulated plastic strain (APS) = 20%

- **Load and strain history**
Hydrogen Induced Stress Cracking (HISC) resistance

- I and E vs time during precharging
- Tube surface at the end of the test
 No cracks

- I and E vs time during CLT
- Seam weld
- Base metal

Examples of savings\cite{4}

- **Wall Thickness according to DNV OS F101**
 - Taking into account:
 - Increased YS$_{0.2}$
 - Tight tolerances
 - Reduced ovality
 - **Results**
 - Wall Thickness vs Internal Diameter

<table>
<thead>
<tr>
<th>ID</th>
<th>DWP</th>
<th>Water depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>½"</td>
<td>690 bars</td>
<td>1500m</td>
</tr>
<tr>
<td>¾"</td>
<td>400 bars</td>
<td></td>
</tr>
<tr>
<td>1"</td>
<td>345 bars</td>
<td></td>
</tr>
<tr>
<td>1.5"</td>
<td>345 bars</td>
<td></td>
</tr>
</tbody>
</table>

This innovative technology is proposing a new product offering:
- a significant **reduction of weight**
- combined with an **increased strength**

Added valued:
- easier installation and manufacturing for the umbilicals manufacturer (i.e. radius reduction)
- improved fatigue resistance for the end-user (reduced number of girth welds taking benefit of strip length)

The manufacturing process and product have been certified by Bureau Veritas in October 2012 and qualified by TOTAL in April 2013

meet the new challenges linked to ultra deep water developments